Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization.

Identifieur interne : 002137 ( Main/Exploration ); précédent : 002136; suivant : 002138

Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization.

Auteurs : Nour Hattab [Oman] ; Mikael Motelica-Heino ; Xavier Bourrat ; Michel Mench

Source :

RBID : pubmed:24809492

Descripteurs français

English descriptors

Abstract

The remediation of copper-contaminated soils by aided phytostabilisation in 16 field plots at a wood preservation site was investigated. The mobility and bioavailability of four potentially toxic trace elements (PTTE), i.e., Cu, Zn, Cr, and As, were investigated in these soils 4 years after the incorporation of compost (OM, 5 % w/w) and dolomite limestone (DL, 0.2 % w/w), singly and in combination (OMDL), and the transplantation of mycorrhizal poplar and willows. Topsoil samples were collected in all field plots and potted in the laboratory. Total PTTE concentrations were determined in soil pore water (SPW) collected by Rhizon soil moisture samplers. Soil exposure intensity was assessed by Chelex100-DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. OM and DL, singly and in combination (OMDL), were effective to decrease foliar Cu, Cr, Zn, and As concentrations of beans, the lowest values being numerically for the OM plants. The soil treatments did not reduce the Cu and Zn mineral masses of the bean primary leaves, but those of Cr and As decreased for the OM and DL plants. The Cu concentration in SPW was increased in the OM soil and remained unchanged in the DL and OMDL soils. The available Cu measured by DGT used to assess the soil exposure intensity correlated with the foliar Cu concentration. The Zn concentrations in SPW were reduced in the DL soil. All amendments increased As in the SPW. Based on DGT data, Cu availability was reduced in both OM and OMDL soils, while DL was the most effective to decrease soil Zn availability.

DOI: 10.1007/s11356-014-2938-0
PubMed: 24809492


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization.</title>
<author>
<name sortKey="Hattab, Nour" sort="Hattab, Nour" uniqKey="Hattab N" first="Nour" last="Hattab">Nour Hattab</name>
<affiliation wicri:level="1">
<nlm:affiliation>ISTO UMR 7327-CNRS, Université d'Orléans Campus Géosciences, 1A, rue de la Férollerie, 45071, Orléans cedex 2, France, Nonahttb45@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>ISTO UMR 7327-CNRS, Université d'Orléans Campus Géosciences, 1A, rue de la Férollerie, 45071, Orléans cedex 2, France</wicri:regionArea>
<wicri:noRegion>France</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Motelica Heino, Mikael" sort="Motelica Heino, Mikael" uniqKey="Motelica Heino M" first="Mikael" last="Motelica-Heino">Mikael Motelica-Heino</name>
</author>
<author>
<name sortKey="Bourrat, Xavier" sort="Bourrat, Xavier" uniqKey="Bourrat X" first="Xavier" last="Bourrat">Xavier Bourrat</name>
</author>
<author>
<name sortKey="Mench, Michel" sort="Mench, Michel" uniqKey="Mench M" first="Michel" last="Mench">Michel Mench</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24809492</idno>
<idno type="pmid">24809492</idno>
<idno type="doi">10.1007/s11356-014-2938-0</idno>
<idno type="wicri:Area/Main/Corpus">002195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002195</idno>
<idno type="wicri:Area/Main/Curation">002195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002195</idno>
<idno type="wicri:Area/Main/Exploration">002195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization.</title>
<author>
<name sortKey="Hattab, Nour" sort="Hattab, Nour" uniqKey="Hattab N" first="Nour" last="Hattab">Nour Hattab</name>
<affiliation wicri:level="1">
<nlm:affiliation>ISTO UMR 7327-CNRS, Université d'Orléans Campus Géosciences, 1A, rue de la Férollerie, 45071, Orléans cedex 2, France, Nonahttb45@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>ISTO UMR 7327-CNRS, Université d'Orléans Campus Géosciences, 1A, rue de la Férollerie, 45071, Orléans cedex 2, France</wicri:regionArea>
<wicri:noRegion>France</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Motelica Heino, Mikael" sort="Motelica Heino, Mikael" uniqKey="Motelica Heino M" first="Mikael" last="Motelica-Heino">Mikael Motelica-Heino</name>
</author>
<author>
<name sortKey="Bourrat, Xavier" sort="Bourrat, Xavier" uniqKey="Bourrat X" first="Xavier" last="Bourrat">Xavier Bourrat</name>
</author>
<author>
<name sortKey="Mench, Michel" sort="Mench, Michel" uniqKey="Mench M" first="Michel" last="Mench">Michel Mench</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic (analysis)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biological Availability (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Calcium Compounds (MeSH)</term>
<term>Copper (analysis)</term>
<term>Environmental Pollution (MeSH)</term>
<term>Metals, Heavy (analysis)</term>
<term>Oxides (MeSH)</term>
<term>Plants (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Soil Pollutants (analysis)</term>
<term>Trace Elements (analysis)</term>
<term>Water (chemistry)</term>
<term>Wood (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arsenic (analyse)</term>
<term>Biodisponibilité (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Bois (composition chimique)</term>
<term>Composés du calcium (MeSH)</term>
<term>Cuivre (analyse)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Métaux lourds (analyse)</term>
<term>Oligoéléments (analyse)</term>
<term>Oxydes (MeSH)</term>
<term>Plantes (MeSH)</term>
<term>Polluants du sol (analyse)</term>
<term>Pollution de l'environnement (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Sol (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Arsenic</term>
<term>Copper</term>
<term>Metals, Heavy</term>
<term>Soil Pollutants</term>
<term>Trace Elements</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Arsenic</term>
<term>Cuivre</term>
<term>Métaux lourds</term>
<term>Oligoéléments</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bois</term>
<term>Eau</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biological Availability</term>
<term>Biomass</term>
<term>Calcium Compounds</term>
<term>Environmental Pollution</term>
<term>Oxides</term>
<term>Plants</term>
<term>Populus</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biodisponibilité</term>
<term>Biomasse</term>
<term>Composés du calcium</term>
<term>Dépollution biologique de l'environnement</term>
<term>Oxydes</term>
<term>Plantes</term>
<term>Pollution de l'environnement</term>
<term>Populus</term>
<term>Sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The remediation of copper-contaminated soils by aided phytostabilisation in 16 field plots at a wood preservation site was investigated. The mobility and bioavailability of four potentially toxic trace elements (PTTE), i.e., Cu, Zn, Cr, and As, were investigated in these soils 4 years after the incorporation of compost (OM, 5 % w/w) and dolomite limestone (DL, 0.2 % w/w), singly and in combination (OMDL), and the transplantation of mycorrhizal poplar and willows. Topsoil samples were collected in all field plots and potted in the laboratory. Total PTTE concentrations were determined in soil pore water (SPW) collected by Rhizon soil moisture samplers. Soil exposure intensity was assessed by Chelex100-DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. OM and DL, singly and in combination (OMDL), were effective to decrease foliar Cu, Cr, Zn, and As concentrations of beans, the lowest values being numerically for the OM plants. The soil treatments did not reduce the Cu and Zn mineral masses of the bean primary leaves, but those of Cr and As decreased for the OM and DL plants. The Cu concentration in SPW was increased in the OM soil and remained unchanged in the DL and OMDL soils. The available Cu measured by DGT used to assess the soil exposure intensity correlated with the foliar Cu concentration. The Zn concentrations in SPW were reduced in the DL soil. All amendments increased As in the SPW. Based on DGT data, Cu availability was reduced in both OM and OMDL soils, while DL was the most effective to decrease soil Zn availability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24809492</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization.</ArticleTitle>
<Pagination>
<MedlinePgn>10307-19</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-014-2938-0</ELocationID>
<Abstract>
<AbstractText>The remediation of copper-contaminated soils by aided phytostabilisation in 16 field plots at a wood preservation site was investigated. The mobility and bioavailability of four potentially toxic trace elements (PTTE), i.e., Cu, Zn, Cr, and As, were investigated in these soils 4 years after the incorporation of compost (OM, 5 % w/w) and dolomite limestone (DL, 0.2 % w/w), singly and in combination (OMDL), and the transplantation of mycorrhizal poplar and willows. Topsoil samples were collected in all field plots and potted in the laboratory. Total PTTE concentrations were determined in soil pore water (SPW) collected by Rhizon soil moisture samplers. Soil exposure intensity was assessed by Chelex100-DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. OM and DL, singly and in combination (OMDL), were effective to decrease foliar Cu, Cr, Zn, and As concentrations of beans, the lowest values being numerically for the OM plants. The soil treatments did not reduce the Cu and Zn mineral masses of the bean primary leaves, but those of Cr and As decreased for the OM and DL plants. The Cu concentration in SPW was increased in the OM soil and remained unchanged in the DL and OMDL soils. The available Cu measured by DGT used to assess the soil exposure intensity correlated with the foliar Cu concentration. The Zn concentrations in SPW were reduced in the DL soil. All amendments increased As in the SPW. Based on DGT data, Cu availability was reduced in both OM and OMDL soils, while DL was the most effective to decrease soil Zn availability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hattab</LastName>
<ForeName>Nour</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>ISTO UMR 7327-CNRS, Université d'Orléans Campus Géosciences, 1A, rue de la Férollerie, 45071, Orléans cedex 2, France, Nonahttb45@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Motelica-Heino</LastName>
<ForeName>Mikael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bourrat</LastName>
<ForeName>Xavier</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mench</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017610">Calcium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014131">Trace Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>C7X2M0VVNH</RegistryNumber>
<NameOfSubstance UI="C016538">lime</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001682" MajorTopicYN="N">Biological Availability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017610" MajorTopicYN="Y">Calcium Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004787" MajorTopicYN="N">Environmental Pollution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010087" MajorTopicYN="Y">Oxides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014131" MajorTopicYN="N">Trace Elements</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24809492</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-014-2938-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Total Environ. 2001 Dec 3;280(1-3):239-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11763270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2006 Nov;144(2):533-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16530308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2001 Jul-Aug;30(4):1222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11476499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2013 Feb;185(2):2039-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22648020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2004 May;72(5):991-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15266696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2003 May-Jun;32(3):824-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12809283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Feb 1;36(3):349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11871548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2004 May;30(3):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14987858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2002 Apr;373(8):873-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12194053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2006 Apr 15;40(8):2753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Waste Manag. 2008;28(1):215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Jan;62(2):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2003 Jan-Feb;32(1):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12549550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 Nov;77(8):1069-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19786291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Regul Toxicol Pharmacol. 1997 Aug;26(1 Pt 2):S3-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Aug;64(8):1264-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2006 Nov 15;40(22):7085-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17154020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2012 Feb 29;205-206:72-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Sep;64(11):1972-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Dec;158(12 ):3560-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20864234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2006 Jul 1;364(1-3):239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2006 Nov;144(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2001 Jun 15;35(12):2602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2006 Aug 1;40(15):4659-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2002;118(3):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12009143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2011 Oct;74(7):2013-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21798598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2003 Jan-Feb;32(1):153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12549554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Nov;138(1):34-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2004 Mar-Apr;33(2):522-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15074803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Jun;158(6):2282-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20219274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Dec;156(3):1128-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18486289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 Apr;71(8):1469-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18291439</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bourrat, Xavier" sort="Bourrat, Xavier" uniqKey="Bourrat X" first="Xavier" last="Bourrat">Xavier Bourrat</name>
<name sortKey="Mench, Michel" sort="Mench, Michel" uniqKey="Mench M" first="Michel" last="Mench">Michel Mench</name>
<name sortKey="Motelica Heino, Mikael" sort="Motelica Heino, Mikael" uniqKey="Motelica Heino M" first="Mikael" last="Motelica-Heino">Mikael Motelica-Heino</name>
</noCountry>
<country name="Oman">
<noRegion>
<name sortKey="Hattab, Nour" sort="Hattab, Nour" uniqKey="Hattab N" first="Nour" last="Hattab">Nour Hattab</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002137 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002137 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24809492
   |texte=   Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24809492" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020